
When Bad Things Happen
to Good Databases
όhǊ ǎƻƳŜǘƘƛƴƎ ƭƛƪŜ ǘƘŀǘΧ J)

Dublin SSUG: June 2010

Paul S. Randal
Kimberly L. Tripp

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Author/Instructor:
Paul S. Randal

Consultant/Trainer/Speaker/Author
CEO, SQLskills.com

Email: Paul@SQLskills.com
Blog: http://www.SQLskills.com/blogs/Paul
Twitter: @PaulRandal

Microsoft Regional Director and SQL Server MVP
Contributing Editor of TechNet and SQL Server Magazines, author of the SQL Q&A
columns, bi-monthly articles on DBA topics
Author of multiple 2008 whitepapers, book chapters, articles
5 years at DEC responsible for the VMS file-system and check/repair
Almost 9 years as developer/manager in the SQL Storage Engine team through
August 2007, ultimately responsible for Core Storage Engine

Wrote DBCC component, other Storage Engine code, DBCC CHECKDB/repair for SQL
2005

Regular presenter at worldwide TechEds, SQL PASS and other conferences on
disaster recovery, HA, maintenance, and internals
Wrote and presented SQL Server 2008 training for Microsoft
Course author/instructor for Microsoft Certified Master qualifications
Co-Chair of the SQL Connections conference

http://www.sqlskills.com/
mailto:paul@microsoft.com
http://www.sqlskills.com/sqlserverstorageengine

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Consultant/Trainer/Speaker/Writer
Founder, SQLskills.com

e-mail: Kimberly@SQLskills.com
blog: http://www.SQLskills.com/blogs/Kimberly

Microsoft Regional Director and SQL Server MVP
Writer/Editor for SQL Magazine www.sqlmag.com
Author/Instructor for SQL Server courses: Designing for Performance,
Indexing for Performance, Maintenance, Disaster Recovery/HA
Author/Manager of SQL Server 2005 Launch Content, Co-author/Manager
for SQL Server 2008 Jumpstart Content, Author/Speaker at TechEd, SQL
Connections, SQLPASS, ITForum, Conference Co-chair for SQL Connections
Author of several SQL Server Whitepapers on MSDN/TechNet:
Partitioning, Snapshot Isolation, Manageability and SQLCLR for DBAs
Author/Presenter for more than 25 online webcasts on MSDN and
TechNet (two series and other individual webcasts)
Co-author MSPress Title: SQL Server 2000 High Availability,
SQL Server 2008 Internals, and the SQL Server MVP Project
Presenter/Technical Manager for SQL Server 2000
High Availability DVD and various 2005/2008 HOL DVDs
L ǎǘƛƭƭ ƭƻǾŜ ǘƘƛǎ ǎǘǳŦŦΧ ŘƻƴΩǘ ƘŜǎƛǘŀǘŜ ǘƻ ŀǎƪ ǉǳŜǎǘƛƻƴǎΗ

Author/Instructor:
Kimberly L. Tripp

http://www.sqlskills.com/
mailto:Kimberly@SQLskills.com
http://www.sqlskills.com/blogs/Kimberly
http://www.sqlmag.com/

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

The Development ςProduction Gap

Development occurs in a vacuum
Sometimes finding excitement in a feature/option but not knowing
the management or operational implications (is it even supported in
production)

5ŜǾŜƭƻǇƳŜƴǘ ŀƴŘ ǇǊƻŘǳŎǘƛƻƴ ŘƻƴΩǘ ǘŀƭƪ ςusually until too late!
5ŜǾŜƭƻǇŜǊǎ ŘƻƴΩǘ ŀǇǇǊŜŎƛŀǘŜ ŜŦŦŜŎǘ ƻƴ {v[{ŜǊǾŜǊ

See this over and over when working with clients

ORMs/LINQ
Easier application development
Not always the most optimal Transact-SQL
Often a lot of ad-hoc or forced statements

Key point ςƴŜƛǘƘŜǊ ƛǎ ƎǊŜŀǘ ŦƻǊ ŜǾŜǊȅǘƘƛƴƎΧ ƴŜŜŘ ǘƻ ŦƛƴŘ ōŀƭŀƴŎŜΗ

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Communication Barriers

Pockets of information within disciplines
Unclear delineation of responsibilities ςǎƻƳŜǘƛƳŜǎ ǘƘŜǊŜΩǎ ƴƻ
ŘŜŦƛƴŜŘ άŘŀǘŀōŀǎŜ ŀǊŎƘƛǘŜŎǘκŘŜǾŜƭƻǇŜǊέ ƻƴƭȅ ǎŜǊǾŜǊ ŀŘƳƛƴƛǎǘǊŀǘƛƻƴ
ŀƴŘ ŎƭƛŜƴǘ ŀǇǇƭƛŎŀǘƛƻƴ ŘŜǾŜƭƻǇƳŜƴǘΧ ǿƘƻǎŜ Ƨƻō ƛǎ ƛǘΚ
Conflicting strategic goals and objectives

Database
AdministratorDatabase

Developer

Database Administration
ŘƻŜǎƴΩǘ ǳƴŘŜǊǎǘŀƴŘ ƻǳǊ

development priorities or
timelines. We just need to have

something to show ςASAP.

5ŜǾŜƭƻǇƳŜƴǘ ŘƻŜǎƴΩǘ
understand logging,

ƳŀƴŀƎŜŀōƛƭƛǘȅΣ ƻƴƭƛƴŜ ƻǇǎΧ

* Reduce complexity
* Clear release management
* Define requirements early

Increase communication *
Constructive collaboration *

Cross-training/lessons learned *

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

How Design Affects Production

Seemingly simple design choices can *hugely* affect
production performance and availability
I often hear ςƭŜǘΩǎ Ƨǳǎǘ ƎŜǘ ǘƘƛǎ ǿƻǊƪƛƴƎ ŀƴŘ ǿŜΩƭƭ ŘŜŀƭ ǿƛǘƘ
performance later (and then it can be very difficult to undo the
affects of bad design)
Many different areas on which to focus:

Database Structures ςCapacity planning
Table design ςconsistent, effective, efficient choices
Indexing strategies ςdesigned, not ad-hoc
Data access options ςad-hoc, sp_executesql, procedures
Naming conventions ς(not critical, per se but saves time later in coding
and usage)
Programming standards ς(again, not critical, per se but saves time
later in troubleshooting and analysis)
Manageability ςDoes this architecture work under load? Can it be
maintained?

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 1: Nested Transactions

Nested transactions do not exist in SQL Server but many
developers believe the syntax and think they do
Trying to use nested transactions leads to transaction log
problems:

Committing a nested transaction does nothing, so the transaction log
cannot clear properly
Rolling-back a nested transaction rolls-back everything

The rollback behavior can be achieved with save-points, but
not the commit behavior

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 2: Bad Naming Schemes

Column/index/table names should:
Be descriptive and understandable
Be consistent
Use fully-spelled-out word

Column/index/table names should NOT:
Use abbreviations

What does dscrPrttpsmean?

Use spaces or invalid characters
Include data types

E.g. colVrChrMxLstKnwnPtntAddr

Single characters (maybe with a number appended)
²ƘŀǘΩǎ ǎǘƻǊŜŘ ƛƴ ǘƘŜ ǘŀōƭŜ ǘплсŀōмΚ

Same applies to table/view/DMV aliases

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 3: Parameterization (1 of 2)

Compilation (CPU) vs. bad plans (usually IO)
How do you access SQL Server?

Statements built on the client -> ad-hoc
Simple parameterization (default)

Safe
Very simple statements
When safe their plan gets reused

Unsafe (typically unsafe unless very straightforward)
Can waste cache (single-ǳǎŜ Ǉƭŀƴ ŎŀŎƘŜ άōƭƻŀǘέύ
Can cost you in compilation (and therefore CPU)

Forced parameterization (database-level setting)
Works harder to parameterize

Reduces CPU
May lead to bad plans

Statements built on the client -> sp_executesql
Forced parameterization -Ҕ Ǉƭŀƴ ŘŜŦƛƴŜŘ ōȅ άŦƛǊǎǘέ ŜȄŜŎǳǘƛƻƴ

Better plan reuse
Again, may lead to bad plans

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 3: Parameterization (2 of 2)

Stored procedures
Centralized logic

Easier to maintain
More secure (options to control/limit data manipulation)

5ƻƴΩǘ ƴŜŜŘ ǘƻ ƎǊŀƴǘ 59[9¢9 ǇŜǊƳƛǎǎƛƻƴǎ ƻƴ ŀ ǘŀōƭŜ ŦƻǊ ŀ ǇǊƻŎŜŘǳǊŜ
to do the delete if the ownership chain is not broken
Can control/limit how many rows are processed (e.g. always
require a WHERE clause)

Know how they work (ǘƘŜȅΩǊŜ ƴƻǘ ǇŜǊŦŜŎǘ ōǳǘ ǘƘŜȅ ŀǊŜ ±9w¸ powerful!)

Know your options (ǘƘŜȅΩǊŜ ŀƭǎƻ ±9w¸ flexible!)
Procedure-ƭŜǾŜƭ ǊŜŎƻƳǇƛƭŀǘƛƻƴ ό/w9!¢9 Χ ²L¢I w9/hatL[9ύ

Good for small procedures with highly volatile code
Statement-level recompilation

Much better for more complex procedures where only a small
amount of code needs to be recompiled
OPTION (RECOMPILE)
OPTION (OPTIMIZE (@variable FOR value))
OPTION (OPTIMIZE FOR UNKNOWN)

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 4: Physical DB Layout

Single data file is fine for a small database
What about when the database becomes 100s of GBs?

Backups take a lot longer
Restores take a lot longer
No piecemeal or partial restores are possible
Migrating to new storage becomes more problematic
Database maintenance becomes problematic
I/O performance becomes harder to maintain

As databases become larger, partitioning them into multiple
filegroups becomes really necessary
Beware of:

One filegroup per table
I/O subsystem contention

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 5: Primary Key Choice

If a clustered index is not defined already, a PRIMARY KEY
ŎƻƴǎǘǊŀƛƴǘ ǿƛƭƭ ǳǎŜ ŀ ŎƭǳǎǘŜǊŜŘ ƛƴŘŜȄ ǘƻ ŜƴŦƻǊŎŜ ǳƴƛǉǳŜƴŜǎǎΧ
This can be good:

If narrow (as few bytes as possible)
Unique (by definition)
Static (little to no changes in value)
Less prone to fragmentation (ever-increasing pattern)

This can be horribly bad
Wide, natural keys used as the clustering key
Prone to significant fragmentation

And, it amazing how many things this affects and how many
ǘƘƛƴƎǎ Ƴǳǎǘ ōŜ ŘƻƴŜ ǘƻ ŦƛȄ ƛǘΧ

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 6: Indexing Strategy

ά{v[{ŜǊǾŜǊ ŘƻŜǎ ŀƭƭ ƻŦ ǘƘŀǘ ŦƻǊ ȅƻǳΦέ

Effective indexing strategies are an absolute requirement for
success

{v[{ŜǊǾŜǊ ŘƻŜǎ bh¢ Řƻ ŀƴȅ ƻŦ ǘƘƛǎ ŦƻǊ ȅƻǳΧ
{v[{ŜǊǾŜǊ ŘƻŜǎƴΩǘ ŀǳǘƻƳŀǘƛŎŀƭƭȅ ŀŘŘ ƴŜŎŜǎǎŀǊȅ ƛƴŘŜȄŜǎ
{v[{ŜǊǾŜǊ ŘƻŜǎƴΩǘ ŀǳǘƻƳŀǘƛŎŀƭƭȅ ŘǊƻǇ ǳƴƴŜŎŜǎǎŀǊȅ ƛƴŘŜȄŜǎ
{v[{ŜǊǾŜǊ ǿƛƭƭ ƭŜǘ ȅƻǳ ŎǊŜŀǘŜ ŀǎ Ƴŀƴȅ ǳǎŜƭŜǎǎ ƛƴŘŜȄŜǎ ŀǎ ȅƻǳΩŘ ƭƛƪŜΧ L

Scalability != add more indexes
Common mistakes:

Randomly adding indexes (one for each column of the table)
Narrow indexes have fewer uses

Trying to cover everything without re-evaluating existing
indexes
Different developers creating the same indexes with different
names resulting in redundant indexes

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 7: Database Settings

Database settings cause problems if not set correctly:
Data and log file sizes and auto-growth
Statistics auto-creation and updating
Auto-shrink and auto-close
Recovery model
Instant file initialization

No database maintenance causes problems:
Index fragmentation
Out-of-date statistics
No proactive corruption detection, no backups

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 8: Misuse of FILLFACTOR

FILLFACTOR allows delaying time before a page split
occurs (which causes fragmentation)
Can be set at instance level or individually
Beware of:

Setting it to a non-default (100%) value for everything
Leaving it at 100% value for everything

How to set?
As high as possible for unchanging data
ΨLǘ ŘŜǇŜƴŘǎΩ ŦƻǊ h[¢t

Start at 70%, monitor, tweak

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 9: Unnecessary Updates

Example: real-estate client

Several million house listings, from around 70 listing
agencies
Updates happen almost daily from each agency
Terrible update logic:

Multiple passes over the data, specifying all columns
values even though only 1 or 2 change
Also updates unchanged data
Enormous amounts of churn in tables and indexes
All logged

SQLskills.com
Dublin UG: When Bad Things Happen to Good Databases

Example 10: LOB Storage Choice

So many choices of data-type:
Fixed-length vs. variable length
8000-byte limit vs. 2-GB limit
Legacy 2-GB limit vs. new 2-GB limit
In-database vs. out-of-database (FILESTREAM)

Choices of whereto store the values:
In-row vs. out-of-row
Same table vs. another table

Optimal choice depends on size and usage pattern
But, choice affects:

Query performance, database maintenance, HA
technologies

